On Additive Bases of Sets with Small Product Set

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Additive Bases

The critical number of G, denoted by c(G), is the smallest s such that Σ(S) = G for every subset S of G with cardinality s not containing 0. The parameter c(G) was first studied by Erdős and Heilbronn in [4]. They obtained the inequality c(Zp) ≤ 3 √ 6p. Olson proved in [13] that c(Zp) ≤ √ 4p− 3 + 1. The authors of [1] obtained the inequality c(Zp) ≤ √ 4p− 7. The evaluation of c(G) for groups wi...

متن کامل

RANDOM B h SETS AND ADDITIVE BASES IN Z N

We determine a threshold function for Bh and additive basis properties in Zn.

متن کامل

Additive Bases with Many Representations

In additive number theory, the set A of nonnegative integers is an asymptotic basis of order 2 if every sufficiently large integer can be written as the sum of two elements of A . Let rA (n) denote the number of representations of n in the form n = a+a', where a, a' eA and a < a' . An asymptotic basis A of order 2 is minimal if no proper subset of A is an asymptotic basis of order 2 . Erdös and...

متن کامل

Zero-sum free sets with small sum-set

Let A be a zero-sum free subset of Zn with |A| = k. We compute for k ≤ 7 the least possible size of the set of all subset-sums of A.

متن کامل

On Additive Bases and Harmonious Graphs

This paper first considers several types of additive bases. A typical problem is to find nv(k), the largest n for which there exists a set {0 al < a2 <" < ak} Of distinct integers modulo n such that each in the range 0 =<-< n can be written at least once as mai + aj (modulo n) with </'. For example, nv(8) 24, The other problems arise if at least is changed to at most, or </' to-</', or if the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2016

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnw291